
Week 12 - Monday

 What did we talk about last time?
 Exam 2 post mortem
 Recursion practice
 Sierpinski triangle!

 Work time

'Taylor Swift'

Person object

33

'Singer'

name

age

job

State
(Instance Variables)

Code to Interact
with the State

(Methods)

getName

setAge

getJob

 The idea of an object is to group together data and code
 You have used objects a bit already
 Strings are objects
 Even lists are a special kind of object

 Encapsulation: hiding data to keep it safe
 Methods provide useful ways to interact with the data
 It's convenient to keep related data grouped together
 You could have a list of Person objects instead of three separate

lists of names, ages, and jobs

 When you have an object, you can call methods on it
 A method is like a function, except that it has access to the

details of the object
 To call a method, you type the name of the object, a dot, and

the name of the method
 A method will always have parentheses after it
 Sometimes the parentheses will have arguments that the

method uses

 You've called methods with strings:

 You've called methods on a list:

phrase = 'BOOM goes the dynamite!'
other1 = phrase.lower() # gets lowercase version
other2 = phrase.upper() # gets uppercase version
words = phrase.split() # turns to list

words.sort() # sorts the list

 Instance variables are the data inside of an object
 Like methods, you can access an instance variable with the

name of the object, a dot, and then the name of the member
 Unlike methods, instance variables never have parentheses
 They are values, not functions that do things

 Python allows us to add instance variables anytime we want
 Doing so lets us keep extra information in each object
 For example, we could give a Person object a nickname

variable after creating it

taylor = Person('Taylor Swift', 33, 'Singer')
taylor.nickname = 'Tay Tay'

 Adding instance variables is fine, but what if you want to
create an object from scratch?

 A class is a template for an object
 You can define a class that will allow you to create your own

custom objects

Person class

name

age

job

'Taylor'

33

'Singer'

name

age

job

'Biden'

80

'President'

name

age

job

'Oprah'

69

'Host'

name

age

job

 Let's look at an example class that holds information about a planet

class Planet:
def __init__(self, name, radius, mass, distance):

self.name = name
self.radius = radius
self.mass = mass
self.distance = distance

def getName(self):
return self.name

def setName(self, name):
self.name = name

 self is a reference to the object that you're currently inside
of

 If you forget to use self, you aren't talking about the current
object, you're talking about an outside variable

 The Java or C++ equivalent of self is this
 When calling a method (or the constructor), you always ignore

the self parameter
 The object itself is automatically supplied

 A constructor is a special kind of method that initializes the
values inside of an object

 It's how a new object is created
 In Python, its name is always __init__
 It takes in the initial values for the object

class Planet:
def __init__(self, name, radius, mass, distance):

self.name = name
self.radius = radius
self.mass = mass
self.distance = distance

 To create a new object, you call its constructor
 This means typing the name of the class with parentheses

after it, including the initial values for the object
 When you call the constructor, you don't pass in self!
 That happens automatically

planet1 = Planet('Jupiter', 69911, 1.9E27, 7.78E8)
planet2 = Planet('Mars', 3390, 6.4e23, 2.27E8)

 An accessor is a kind of method that gets a value out of an object
 It can read an existing value or compute a new one
 An accessor doesn't change the data inside the object

 Calling an accessor is like calling any other method on an object
 Object name, dot, then method name
 Leave off the self!

def getName(self):
return self.name

name = planet1.getName()
print(name)

 A mutator is a kind of method that sets a value in an object
 Its purpose is to change the data inside the object

 It could do some checking to make sure that a good value is
supplied

def setName(self, name):
self.name = name

planet1.setName('Jove') # new name
print(planet1.getName()) # prints Jove

 We need accessors for:
 Radius
 Mass
 Distance

 Accessors don't have to report instance variables as they are
 They could also combine instance variables to answer

questions
 Using formulas, we can find

 Volume: 4
3
𝜋𝜋𝑟𝑟3

 Surface area: 4𝜋𝜋𝑟𝑟2

 Density: 𝑚𝑚
𝑉𝑉

 Python uses a number of special methods
 A constructor (__init__) is one

 What happens if you try to print a Planet object?
 <__main__.Planet object at 0x00000000030D4080>

 Not very helpful
 There's a special __str__ method that gives back a string

version of the object
 Let's make one that gives back the name

 We can make a number of planets using the following data
Name Radius (km) Mass (kg) Distance (km)

Mercury 2440 3.3E23 5.79E7

Venus 6052 4.9E24 1.08E8

Earth 6371 6.0E24 1.50E8

Mars 3390 6.4E23 2.28E8

Jupiter 69911 1.9E27 7.78E8

Saturn 58232 5.7E26 1.42E9

Uranus 25362 8.7E25 2.87E9

Neptune 24622 1.0E26 4.50E9

 It's convenient to put objects in lists
 We could have a list containing all the planets we made:

planets = [mercury, venus, earth, mars, jupiter,
saturn, uranus, neptune]

 With all the planets in a list, we could do something useful,
like find the biggest planet
 Obviously, this might be more interesting if the list were bigger

biggest = planets[0]
for planet in planets:

if planet.getRadius() > biggest.getRadius():
biggest = planet

print('Biggest:", biggest)

 Let's write a Student class
 Instance variables:
 First Name
 Last Name
 GPA
 ID

 We need accessors for all of the instance variables
 And mutators for GPA

 Python has other special methods
 Some are useful if your class is designed to hold a collection of

things
 The __getitem__method retrieves an item based on the index

specified
 The __len__method returns the number of items in the collection
 The __contains__method says whether or not an element is in

your collection

 Let's make a Sentence class
 Its constructor
 Takes a string
 Splits that string on spaces to make a list of strings
 Stores that list as its instance variable

 The __getitem__method should return the specified words in
the list

 The __len__method returns the number of words in the
sentence

 The __contains__method should say whether the list
contains the string the user is looking for

 Animating the solar system

 Vote!
 Read sections 10.4, 10.5, and 10.6
 Keep working on Assignment 8

	COMP 1800
	Last time
	Questions?
	Assignment 8
	Objects in Python
	What's an object?
	Objects
	Why are objects a good idea?
	Calling methods
	Method call examples
	Instance variables
	Adding members
	Creating entirely new classes
	Classes are like blueprints
	Planet class
	What is self?
	Constructor
	Creating a new object
	Accessors
	Mutators
	Let's write some accessors
	Let's write more!
	Special methods
	Planets
	Lists
	Determine biggest planet
	Student class
	More special methods
	Sentence class
	Upcoming
	Next time…
	Reminders

